Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	Concentrated nitric acid AND concentrated sulfuric acid ALLOW 'concentrated nitric and sulfuric acids' Concentrated HNO ₃ and concentrated H ₂ SO ₄	Extra reagents	1

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	To prevent multiple substitutions/ to stop di- or trinitrobenzene forming ALLOW To stop further substitution (of NO ₂)/ further nitration IGNORE further reaction	Further addition of nitro groups	1

Question Acce Number	ptable Answers	Reject	Mark
Cond	Sn AND concentrated HCI/ centrated hydrochloric acid DW Iron/Fe or Zn/Zinc for tin c for concentrated	Dilute HCI	1

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	C ₆ H ₅ NH ₃ ⁺ CI ⁻		1
	ALLOW C ₆ H ₅ NH ₃ CI		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	ALLOW C ₆ H ₅ for benzene Undisplayed CH ₃	Skeletal formula Structural formula	1

Question Number	Acceptable Answers	Reject	Mark
1(b) (iii)i	(transition metal) complex ion ALLOW Transition metal complex / copper complex IGNORE Formulae of ions (1) F (azo) dye / azo compound / diazo compound ALLOW diazonium compound		2
	molecule for compound (1)		

Question	Acceptable Answers	Reject	Mark
Number			
1b(iv)	Benzenediazonium chloride ALLOW Phenyldiazonium chloride	Benzadiazonium chloride Diazonium salt	1

Question Number	Acceptable Answers	Reject	Mark
1b(v)	HCI + NaNO ₂ OR Hydrochloric acid + Sodium nitrite / nitrate(III) OR alternative cation to Na ⁺ IGNORE HNO ₂ Concentration of HCI	HCI + HNO ₂	1

Question Number	Acceptable Answers	Reject	Mark
1b(vi)	H ₃ C CH ₃		1
	ALLOW any substitution positions $C_6H_3(CH_3)_2NH_2$ H- $_6H_2(CH_3)_2NH_2$ Kekule structure	C ₆ H ₂ (CH ₃) ₂ NH ₂	

Total for Question = 10 marks

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	Overall yield higher OR Reduces use of solvents (ALLOW chemicals / reactants) OR Less loss of chemicals OR Less waste products IGNORE References to Energy / fuel / CO ₂ References to atom economy More efficient conversion Fewer side products		1

	Acceptable Answers	Reject	Mark
Question			
Number			
2 (a)(ii)	Lowers (operating) temperature / energy (requirements) OR Less fuel needed		1
	IGNORE References to catalyst properties such as 'lowers E _a ', 'can be re-used' Atom economy		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (i)	CH ₃ COCI + AICI ₃ → CH ₃ CO ⁺ + AICI ₄ ⁻ Structural formulae not required Positive charge may be anywhere on the electrophile. IGNORE Curly arrows even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	TE on incorrect electrophile in (b)(i) If benzene used instead of substituted benzene OR If final product is not 1,4 only MP 1 and 2 can be scored Curly arrow from on or within the circle to positively charged carbon ALLOW Curly arrow from anywhere within the hexagon Arrow to any part of the electrophile including to the + charge (which can be anywhere on the electrophile) Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and facing the tetrahedral carbon and with some part of the positive charge within the horseshoe ALLOW dotted horseshoe (1) Curly arrow from C—H bond to anywhere in the benzene ring reforming delocalized structure of a stable molecule (1) Correct Kekulé structures score full marks	Curly arrow on or outside the hexagon Partial bonds to H and CH ₃ unless part of a 3D with a wedge bond	3
	Ignore any involvement of AICI ₄ in the final step		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (iii)	No HCI formed (as a by-product) OR Ethanoic acid easier to recover	Chlorine	1
	ALLOW Reverse arguments		
	IGNORE Chlorine containing product References to ozone layer, acid rain, global warming Atom economy		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	Catalyst (more) easily recovered / separated OR can be filtered		1
	OR Facilitates the use of flow (rather than batch) systems		
	IGNORE references to properties of catalysts		

Question Number	Acceptable Answers	Reject	Mark
2	Reaction 1		
(c)(ii)	(red) phosphorus / P / P_4 and iodine / I_2 ALLOW	NaI + H ₂ SO ₄	
	PI ₃ / HI (1)	PI ₅	
	Reaction 3		
	Hydrochloric acid / HCI(aq) or sulfuric acid / H ₂ SO ₄ (aq) (1)	Just H ⁺ / H ₃ O ⁺	
	and reflux / heat (1)		
	Award second mark for Acid / H ⁺ / H ₃ O ⁺ and reflux	reflux / heat without acid or with	
	OR	warm or <50°C	
	NaOH(aq) / KOH(aq) (1)		
	(reflux) then acidify with HCI(aq) or H_2SO_4 (aq) (1)		
	IGNORE Omission of states throughout		

Question Number	Acceptable Answers		Reject	Mark
2	C=O / carbonyl group (only) in carboxylic acid / ibuprofen	(1)	ketone	2
(c) (iii)				
	Absorption / peak			
	at 1725 - 1700 (cm ⁻¹)	(1)	1700 - 1680 (cm ⁻¹)	
	If no other mark has been award	ed,	, ,	
	then ALLOW (for 1 mark)		Single values rather than	
	OH in both but		ranges	
	in alcohol 3750 - 3200 (cm ⁻¹) bu carboxylic acids 3300 to 2500 (cr			

Question Number	Acceptable Answers	Reject	Mark
2 (d)(i)	(A chiral molecule is) non-superimposable on its mirror image. ALLOW Asymmetric (tetrahedral) carbon atom / has a carbon atom bonded to four different groups / atoms IGNORE Has two enantiomers Functional (as in functional groups) Reference to rotation of plane polarized light	molecules / species (for groups)	1

Question Number	Acceptable Answers	Reject	Mark
2 (d)(ii)	ALLOW any clear indication of chiral carbon		1

Question Number	Acceptable Answers	Reject	Mark
2 (d)(iii)	(A racemic mixture is) an equimolar mixture of the two enantiomers / (optical) isomers ALLOW (for equimolar mixture) equal amounts / concentrations / volumes / proportions OR 50:50 mixture	Just 'no effect on plane polarised light'	1

Question Number	Acceptable Answers	Reject	Mark
Number 2 (d) (iv)	Any two of 1. All the ibuprofen is useful (rather than half) 2. No need for separation of isomers / enantiomers 3. No need for a more complex synthesis forming just one enantiomer 4. Sometimes one enantiomer has negative effects 5. Smaller dosage may be used ALLOW (For point 4 above) Dose / inactive isomer is less likely to be harmful		2
	IGNORE Reference to cost / yield / atom economy / side effects		

Question	Acceptable Answers	Reject	Mark
Number			
(a)(i)	$HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + 2HSO_4^- + NO_2^+$		2
(4)(1)	OR		
	$HNO_3 + H_2SO_4 \rightarrow H_2O + HSO_4^- + NO_2^+$		
	OR		
	2-step version of these involving $H_2NO_3^+$		
	Correct electrophile (1) correct equation(s) (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3
	$\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$		
	OR NO ₂ ⁺ as electrophile		
	TE on incorrect electrophile in (a)(i)		
	Curly arrow from on or within the circle to positively charged nitrogen		
	ALLOW Curly arrow from anywhere within the hexagon		
	Arrow to any part of the electrophile including to the + charge (1)		
	Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and		
	facing the tetrahedral carbon and		
	with some part of the positive charge within the horseshoe (1)		
	Curly arrow from C—H bond to anywhere in the benzene ring reforming delocalized structure (1)		
	Correct Kekulé structures score full marks		
	Ignore any involvement of anion in the final step		

Question Number	Acceptable Answers	Reject	Mark
(a)(iii)	Benzene ring in phenol has higher electron density ALLOW O / OH donates electron density to the (benzene) ring (1)		2
	Because lone pair of electrons on (phenol) oxygen is donated to / overlaps with / interacts with (n electrons of benzene) ring (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iv)	Substitution may also occur at the 2 / 6 ring positions / ortho position		1
	ALLOW 'other' / 3 / 5 / meta ring positions / isomers		
	ALLOW further substitution occurs		
	IGNORE By-products formed		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(v)	Tin /Sn & (conc.) hydrochloric acid / HCI(aq)	LiAIH ₄ / NaBH ₄	1
	ALLOW Iron/ Fe for tin		
	ALLOW HCI for HCI(aq)		

Question Number	Acceptable Answers	Reject	Mark
	Yield = (100 x 0.25 x 0.74 x 0.85) = 15.725 / 15.73 / 15.7 / 16 (%)	16.0 and other rounding errors	1

Question	Acceptable Answers	Reject	Mark
Number			
3 (b)(i)	Insoluble impurities are removed by		2
	the hot filtration (1)		
	Soluble impurities are removed by		
	the cold filtration (1)		

Question Number	Acceptable Answers		Reject	Mark
3 (b)(ii)	5°C and 95°C Because the lowest proportion (ALLO 'amount') of paracetamol remains in solution (at the end) IGNORE Just 'greatest difference in temperature	(1)		2

Question Number	Acceptable Answers	Reject	Mark
(b) (iii)	Measure melting temperature ALLOW	Boiling temperature	1
	TLC (with UV light)	HPLC	
	Ignore		
	Must melt over range of 2°C		
	Data = data book value		

Question	Acceptable Answers	Reject	Mark
Number			
3 c(i)	Peak at m/e = 151 clearly labelled M		1
	_		
	ALLOW		
	Alternative labels		

Question Number	Acceptable Answers	Reject	Mark
3 c(ii)	$43 = \begin{bmatrix} CH_3 - C \\ O \end{bmatrix}^{+} & OR \\ CH_3CO^{+} / \\ C_2H_3O^{+} \end{bmatrix}$ ALLOW CONH ⁺ Ignore position of charges	C ₃ H ₇ ⁺ uncharged species	1

Question Number	Acceptable Answers	Reject	Mark
3 (d)	Limit number of tablets sold OR Give (oral) advice at the point of sale OR Use packs with tablets individually wrapped ALLOW Reduce the (tablet) dose	Only sell on prescription / doctor's advice Label packet	1