Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	Concentrated nitric acid AND concentrated sulfuric acid ALLOW 'concentrated nitric and sulfuric acids' Concentrated HNO_{3} and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$	Extra reagents	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i)}$	To prevent multiple substitutions/ to stop di- or trinitrobenzene forming ALLOW To stop further substitution (of NO_{2})/ further nitration IGNORE further reaction	Further addition of nitro groups	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (\text { iii) }}$	Tin/ Sn AND concentrated HCl/ concentrated hydrochloric acid	Dilute HCl	1
	ALLOW Iron/Fe or Zn/Zinc for tin Conc for concentrated		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$		1
	$\mathrm{ALLOW}^{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}}$		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	 H ALLOW $\mathrm{C}_{6} \mathrm{H}_{5}$ for benzene Undisplayed CH_{3}	Skeletal formula Structural formula	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i i) i}$	(transition metal) complex ion ALLOW Transition metal complex / copper complex IGNORE (1) Formulae of ions		2
	F (azo) dye / azo compound / diazo compound ALLOW diazonium compound molecule for compound		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 b (i v) ~}$	Benzenediazonium chloride ALLow Phenyldiazonium chloride	Benzadiazonium chloride Diazonium salt	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 b (v)}$	$\mathrm{HCl}+\mathrm{NaNO}_{2}$ OR Hydrochloric acid + Sodium nitrite / nitrate(III) OR alternative cation to Na^{+}	$\mathrm{HCl}+\mathrm{HNO}_{2}$	1
IGNORE HNO_{2} Concentration of HCl			

Question Number	Acceptable Answers	Reject	Mark
1b(vi)	 ALLOW any substitution positions $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}$ H- ${ }_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}$ Kekule structure	$\mathrm{C}_{6} \mathrm{H}_{\mathbf{2}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}$	1

Total for Question = 10 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i) ~}$	Overall yield higher OR Reduces use of solvents (ALLOW chemicals / reactants) OR Less loss of chemicals OR Less waste products IGNORE References to Energy / fuel / CO_{2} References to atom economy More efficient conversion Fewer side products	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	Lowers (operating) temperature / energy (requirements) OR Less fuel needed (a)(ii)	IGNORE References to catalyst properties such as 'lowers E ${ }_{\text {a ', 'can be re-used' }}$ Atom economy	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i) ~}$	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}{ }^{-}$Structural formulae not required Positive charge may be anywhere on the electrophile. IGNORE Curly arrows even if incorrect	$\mathbf{1}$	

| Question |
| :--- | :--- | :--- | :--- |
| Number | Acceptable Answers

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$ (b)(iii)	No HCl formed (as a by-product) OR Ethanoic acid easier to recover ALLOW Reverse arguments IGNORE Chlorine containing product References to ozone layer, acid rain, global warming Atom economy	Chlorine	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i)}$	Catalyst (more) easily recovered / separated OR can be filtered		$\mathbf{1}$
OR Facilitates the use of flow (rather than batch) systems IGNORE references to properties of catalysts			

Question Number	Acceptable Answers	Reject	Mark
2 (c) (iii)	$\mathrm{C}=\mathrm{O} /$ carbonyl group (only) in carboxylic acid / ibuprofen Absorption / peak at 1725-1700 (cm^{-1}) If no other mark has been awarded, then ALLOW (for 1 mark) OH in both but in alcohol 3750-3200 $\left(\mathrm{cm}^{-1}\right)$ but in	ketone $\begin{align*} & 1700-1680 \tag{1}\\ & \left(\mathrm{~cm}^{-1}\right) \end{align*}$ Single values rather than ranges	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (d) (i)}$	(A chiral molecule is) non-superimposable on its mirror image.		$\mathbf{1}$
	ALLOW Asymmetric (tetrahedral) carbon atom / has a carbon atom bonded to four different groups / atoms	molecules / species (for groups)	IGNORE Has two enantiomers Functional (as in functional groups) Reference to rotation of plane polarized light

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$			
$\mathbf{(d) (i i)}$			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	(d) racemic mixture is) an equimolar (dixture of the two enantiomers / (optical) isomers ALLOW (for equimolar mixture) equal amounts / concentrations / volumes / proportions	Just 'no effect on plane polarised light'	$\mathbf{1}$
OR $50: 50$ mixture			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	Any two of		$\mathbf{2}$
(d)(iv)	1. All the ibuprofen is useful (rather than half) 2.No need for separation of isomers / enantiomers 3. No need for a more complex synthesis forming just one enantiomer 4. Sometimes one enantiomer has negative effects	5. Smaller dosage may be used	
ALLOW (For point 4 above) Dose / inactive isomer is less likely to be harmful	IGNORE Reference to cost / yield / atom economy / side effects		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(i)	$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}{ }^{-}+\mathrm{NO}_{2}{ }^{+}$		
OR		2	
	$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}{ }^{-}+\mathrm{NO}_{2}{ }^{+}$ OR 2-step version of these involving $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}$ Correct electrophile (1) correct equation(s) (1)		

Question Number	Acceptable Answers	Reject	Mark
$\begin{gathered} 3 \\ \text { (a) }(\mathrm{ii}) \end{gathered}$	OR $\mathrm{NO}_{2}{ }^{+}$as electrophile TE on incorrect electrophile in (a)(i) Curly arrow from on or within the circle to positively charged nitrogen ALLOW Curly arrow from anywhere within the hexagon Arrow to any part of the electrophile including to the + charge Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and facing the tetrahedral carbon and with some part of the positive charge within the horseshoe Curly arrow from $\mathrm{C}-\mathrm{H}$ bond to anywhere in the benzene ring reforming delocalized structure Correct Kekulé structures score full marks Ignore any involvement of anion in the final step		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	Benzene ring in phenol has higher electron density (a)(iii) O / OH donates electron density to the (benzene) ring (1) Because lone pair of electrons on (phenol) oxygen is donated to / overlaps with / interacts with (\square electrons of benzene) ring (1)		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	Substitution may also occur at the 2 / (a)(iv) 6 ring positions / ortho position		1
	ALLOW 'other' / 3 / 5 / meta ring positions / isomers		
	ALLOW further substitution occurs		
IGNORE			
By-products formed			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	Tin /Sn \& (conc.) hydrochloric acid /	$\mathrm{LiAlH}_{4} / \mathrm{NaBH}_{4}$	1
$\mathbf{(a) (v)}$	Cl(aq) ALLOW Iron/ Fe for tin ALLOW HCl for HCl(aq)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	Yield $=(100 \times 0.25 \times 0.74 \times 0.85)=$ $(\mathbf{a})(\mathbf{v i})$	16.0 and other rounding errors	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (i)}$	Insoluble impurities are removed by the hot filtration Soluble impurities are removed by the cold filtration		2

Question Number	Acceptable Answers	Reject	Mark
$\begin{gather*} 3 \tag{1}\\ \text { (b) }(\mathrm{ii}) \end{gather*}$	5으 and 95응 Because the lowest proportion (ALLOW 'amount') of paracetamol remains in solution (at the end) IGNORE Just 'greatest difference in temperature'		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(iii)	Measure melting temperature	Boiling temperature	1
	ALLOW TLC (with UV light) Ignore Must melt over range of 2으 Data = data book value	HPLC	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ c (i) ~}$	Peak at $\mathrm{m} / \mathrm{e}=151$ clearly labelled \mathbf{M} ALLOW Alternative labels	1	

Question Number	Acceptable Answers		Reject	Mark
3 c (ii)	$43=\left[\mathrm{CH}_{3}-\mathrm{C}{ }_{\mathrm{O}}\right]^{+}$ ALLOW CONH ${ }^{+}$ Ignore position of charges	$\begin{gathered} \mathrm{OR} \\ \mathrm{CH}_{3} \mathrm{CO}^{+} \\ \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+} \end{gathered}$	$\mathrm{C}_{3} \mathrm{H}_{7}^{+}$ uncharged species	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (d)	Limit number of tablets sold OR Give (oral) advice at the point of sale OR Use packs with tablets individually wrapped ALLOW Reduce the (tablet) dose	Only sell on prescription / doctor's advice Label packet	1

